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Using a Langevin description of spinodal decomposition in fluids, we examine domain growth in the
diffusive, viscous, and inertial regimes. In the framework of this model, numerical results corroborate earlier
theoretical predictions based on scaling arguments and dimensional analysis.@S1063-651X~96!05505-5#
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The dynamics of phase transitions in binary fluids
quenched into the coexistence region has been the subject of
considerable study in recent years@1,2#. It is generally ac-
cepted that long after the quench, the phase separation dy-
namics can be characterized by a single time dependent
length scale,R(t);ta. As a result, much attention has fo-
cused on how domains grow in time — specifically what is
the growth exponenta?

Scaling and dimensional analyses due to Siggia@3#, Fu-
rukawa @4#, San Miguel, Grant, and Gunton@5# and more
recently Bray@2# address this question. Experimental@6# and
numerical@7–14# studies, however, have not necessarily sup-
ported these theories, sometimes providing conflicting results
@15#. Often overlooked in spinodal decomposition in binary
fluids is that several stages of growth can occur, in each of
which a different transport mechanism dominates. This fact
has been reemphasized in@2,4,17,18#. Individual experi-
ments and numerical simulations typically access only a par-
ticular regime. Lacking has been a clear demonstration of~1!
the existence of these distinct regimes within a single model
and, subsequently,~2! quantitative results in these regimes
which validate theoretical predictions@2–5#. In this paper we
address these points.

To simulate phase separation in a binary fluid, we used
the Langevin model of Farrell and Valls@7#. The order pa-
rameterc is the difference in the concentration of the two
fluid components. Its evolution and that of the fluid velocity
are given by

] tc5G2m2l“•@cru#, ~1!

r] tu5h“2u1s“~“•u!2l“•~ruu!2lc“m, ~2!

wherer is the average mass density,G is an order parameter
diffusion coefficient, andh is the shear viscosity. Here
s5h(122/d)1z, wherez is the bulk viscosity, andd is the
spatial dimension. The dimensionless constantl couples the
order parameter to the fluid velocity and is also the strength
of the convective flow. The chemical potentialm5dF/dc
whereF is the free energy of the system at equilibrium given
by F@c,u#5 1

2*d
dr @ru21 1

2ac42bc21bKu“cu2]. The

strength of the interfacial energy isbK. Below the critical
temperature,a andb are positive constants.

After the fluid is quenched, single phase droplets form
and grow. In the coarsening process a competition between
hydrodynamic and thermodynamic effects can lead to three
dynamical regimes: the diffusive, viscous, and inertial@2,4#.
We discuss these briefly, using dimensional analysis based
on Eqs.~1! and ~2!.

In the diffusive regime, the fluid velocities are small, and
the advective term in~1! is negligible compared to the order
parameter diffusion. Therefore~1! becomes] tc;G“2m.
Since the chemical potentialm;k/R wherek is the surface
tension andR is the characteristic length scale in the system
~i.e., domain size!, we haveR(t);(Gk)1/3t1/3. The coeffi-
cientGk implies that the growth in this regime is driven by
diffusion and surface tension. In two dimensions, for ex-
ample, the surface tensionk is given byk54/3(2bK)1/2 @4#.

In the viscous regime, hydrodynamics becomes relevant.
In particular, in the velocity Eq.~2!, the viscous term domi-
nates the inertial terms. If one ignores the inertial and bulk
viscosity terms, the shear stress term is balanced by the force
due to the gradient in the chemical potential. Thus
h“2u;lc“m so that R(t);lk/ht. This is the linear
growth law predicted by Siggia@3#. The coefficientlk/h
indicates growth driven by the surface tension and controlled
by the viscous force in the fluid. The length-scaleRd and
time-scaletd at which the system crosses over from the dif-
fusion regime to the viscous regime is given by setting
(Gk)1/3td

1/3;lk/htd . Thus td;(Gh3/k2l3)1/2 and
Rd;(Gh/l)1/2.

In the inertial regime, inertial effects dominate over the
viscous forces so thatrdu/dt;lc“m. This leads to
R(t);(lk/r)1/3t2/3, as predicted by Furukawa@4# ~see also
@2#!. The coefficient here indicates that the growth is driven
by the surface tension and controlled by the inertial effects.
The crossover between the viscous regime and the inertial
regime thus occurs at length-scaleRh and time-scaleth
where lk/hth;(lk/r)1/3th

2/3 so that th;h3/rl2k2 and
Rh;h2/lrk. Similarly, the lengthRi and timet i for cross-
over from diffusion directly to inertial are given by
Ri;(G2kr/l)1/3 and t i;Gr/l, respectively. This would
correspond to the inviscid flow case.

To facilitate growth of domains in each of these regimes
and to access each of them within the framework of a single
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model, we varyRd andRh ~relative to system size! by ad-
justing the parametersh, l, and b. For convenience, the
actual~dimensionless! numerical equations we solve are the
following:

] tf5“

2@f32f2b“2f#2l̂“•@fv#1m, ~3!

] tv i5ĥ“2v i1ŝ(
k
“ i“kvk2l̂f“ i@f32f2b“2f#

2l̂(
k

@“k~v ivk!1vk“ ivk#1wi . ~4!

The rescaled order parameter and transport quantities are
given in terms of those used in~1! and ~2! by
f5(a/b)1/2c, v5(a/brK)1/2u, ĥ5h/rGK, ŝ5s/rGK,
l̂5l(b/G2arK)1/2. Space and time are rescaled byr→r ,
t→GKt. The dimensionless crossover lengths are given by
Rd5(ĥ/l̂)1/2, andRh5ĥ2/l̂k̂, where we have setr51. In
two dimensions, the surface tension,k̂54/3(2b)1/2, so that
by varyingb, we can control the surface tension.

We studied deep, critical or symmetric quenches with
^f&50 throughout the course of the simulations, where^.&
denotes an ensemble average or space average. The order
parameter and velocity are initially taken as Gaussian fields
with ^f&5^v i&50, and ^f2&5^v i

2&50.005. The grid size
Dx used was 1.7 and the time stepDt was chosen as 0.05 in
two and 0.02 in three dimensions, respectively. The numeri-
cal integration scheme is the same as in@7,11#. The average
domain size was defined as the first zero of the equal time
correlation functionG(r ,t)5^f(x,t)f(x1r ,t)&, the Fourier
transform of which is the structure factorS(k,t). The fields
m andwi were Gaussian, white noise with covariance given
by the fluctuation-dissipation relation@7,11#. We found that
adding noise does not alter the growth exponent in the scal-
ing regime. However it introduces curvature in the early
growth so that longer times are required to reach the scaling
regime. The results we report here were obtained in the ab-
sence of noise and in all cases were averaged over 3 or 4
independent runs.

In two dimensions, on a 10242 system, we letĥ51,
l̂51 andb51. ThusRd;Rh;1 ~in lattice units! are both
small compared to the lattice sizeL51024 so that for do-
main sizeR(t)@Rh , the system will favor droplet growth in
the inertial regime. The data represented by (h) in Fig. 1
shows thatR(t) has a behavior consistent witha52/3. In
order to have a viscous regime, one requires
Rd!R(t)!Rh . This is satisfied by choosing, for example,
ĥ520, l̂51 andb51 so thatRh;120 andRd;3. In Fig. 1
the symbol (3) shows the growth under these conditions. It
is consistent witha51/2 growth over a time interval span-
ning about 1.5 decades. The exponent ofa51/2 in two di-
mensions was predicted in@5#. SinceRh;120, the inertial
force would not be expected to influence the growth until at
late times whenR(t) is comparable withRh . To indicate
how thea51/2 growth could yield to thea52/3 growth, we
changed parameters to makeRh smaller so that the crossover
from the viscous regime to the inertial regime can happen
earlier. The symbols (L) and ~1! in Fig. 1 show data for
Rh;30 (ĥ511, l̂51, b51) and Rh;7 (ĥ55, l̂51,

b51), respectively. AsRh ~and Rd) decreases, the data
shows that the viscous growth and a later, faster inertial
growth occurs progressively earlier. Finite size effects and
the need for very long times to see adequate viscous and
inertial growth make quantitative analysis of growth in the
crossover regimes difficult. The time evolution of the Rey-
nolds number Re, the ratio of inertial to viscous effects, is
consistent with the behavior ofR(t) asRh decreases. Corre-
sponding to the parameters for domain growth, the insert to
Fig. 1 shows Re how changes from its behavior in the vis-
cous regime, where Re,1 and is essentially constant, to that
in the inertial regime where it increases ast1/3 @4#. We find
that for h>11, the system lies well within the viscous re-
gime until the influence of inertial flow at very late times.
The scaled correlation functionsG(j) and j2G(j) @8# are
shown in Fig. 2, forĥ520, l̂51, b51, wherej5r ^k& and
^k&5*kS(k,t)dk/*S(k,t)dk. The data collapses well for
several times, indicating that thea51/2 growth is in the
scaling regime. The scaling behavior fora52/3 was shown
in @11#.

Using this model in two dimensions, we previously@11#
examined the behavior ofa as a function of the coupling
constant,l̂ (0,l̂,1), by fixing ĥ, b andr. For this one
parameter system, Rh;1/2l̂ and Rd;1/l̂1/2. For
1/2,l̂,1, Rh;Rd;1, so that only the inertial growth sur-
vived. Forl̂→0, the domain sizeR(t),Rd and the dominant
mechanism was diffusion. It was the first attempt to show
within a single model different regimes, however, the one-

FIG. 1. The domain growthR(t) vs timet in twodimensions for
different crossover lengthsRh showing the change from growth in
the inertial regime (t2/3) to the viscous regime (t1/2). The errors in
the data due to different initial conditions are of the order of the size
of the symbols. The inset shows the Reynolds number Re
5 ṽR(t)/ĥ as a function of time, whereṽ is the characteristic ve-
locity calculated asdR/dt @4#. The data are consistent with Re
;t1/3 in the inertial regime and Re;const in the viscous regime.
The straight line has slope 1/3. The symbols representĥ520,
l̂51, Rh;120 (3), ĥ511, l̂51, Rh;30 (L), ĥ55, l̂51,
Rh;7 (1) and ĥ52,l̂51, Rh;1 (h). The surface tension
controlling parameterb51 for all cases.
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parameter system was limited in how well it could capture
all three regimes. The competing mechanisms of viscosity,
inertial force, and surface tension appear to demand a system
with two parameters. Two-dimensional lattice Boltzmann
and lattice gas simulations seem to be carried out primarily
with relatively smallRh , thus thea52/3 estimates are con-
sistent with growth in the inertial regime@9,10,17#. The re-
sults from molecular dynamics are controversial. It has been
pointed out@18# that thea51/2 growth obtained in@14# may
be attributed to droplet coalescence. Velasco and Toxvaerd
@15# observeda51/2 crossing over toa52/3 in their two-
dimensional molecular dynamics simulations. A recent ex-
perimental study of near-critical two-dimensional phase
separated polymer solutions obtained an early growth of
t1/3 followed by at2/3 at late stage@16#.

Three-dimensional simulations were carried out on Eqs.
~3! and ~4! using a system with 2563 lattice sites and show
behavior analogous to that observed in two dimensions. As
above, we setb51. If ĥ51 andl̂51, Rh;Rd;1 and are
small compared to the domain sizeR(t). One thus expects
inertial growth witha52/3 at late times, and this is seen by
the data represented by (h) in Fig. 3. If ĥ5l̂ ~with
Rd;1), the system should favor growth in the viscous re-
gime for sufficiently largeĥ. The symbols (3) and (L) in
Fig. 3 show growth forĥ525, l̂525, andĥ520, l̂520,
respectively. Asĥ increases, the growth becomes consistent
with a51. The crossover between the viscous regime and
the inertial regime can be simulated through decreasing
Rh , while keepingRd small (;1). The symbols (1) in Fig.
3 usedĥ512, l̂512 and show that a regime with a growth
exponent of 1 gradually yields to a slower growth regime, a
2/3 type growth. Figure 3~inset! shows that the behavior of
the Reynolds number Re is consistent with the growth for
appropriate parameters in the inertial and viscous regimes.

Finite size effects are more pronounced in three dimensions,
so that the inertial regime is difficult to access asRh in-
creases. In Fig. 4 is plotted the scaling of the correlation
functionsG(j) andj2G(j) ~inset! for the inertial regime in
three dimensions. The quality of the collapse of the data in
Fig. 4 for several times indicates that thea52/3 growth is in
the scaling regime.

FIG. 2. The scaled and normalized correlation functionG(j) vs
j, where j5r ^k& and the first moment̂ k&5@*kS(k,t)dk#/
@*S(k,t)#, for ĥ520, l̂51, andb51 on 102431024 lattices, at
t52500 (L), 3000 (3), 4000 (s), 5000~1!, and 6000 (h). The
inset showsj2G(j) versus j for the same times and since
^k&;25, scaling is good for;80 lattice units.

FIG. 3. The domain growthR(t) vs time t in threedimensions
for values of crossover lengthsRh showing the change ina from
inertial (t2/3) to viscous (t) regime. The errors are of the size of the
symbols. The inset shows that the behavior of the Reynolds number
Re is consistent witht1/3 in the inertial regime andt in the viscous
regime. The straight lines have slopes 1/3~– - –! and 1~—–!. The
symbols representĥ525, l̂525 (s), ĥ520, l̂520 (L), ĥ58,
l̂58 (1), ĥ51, l̂51 (h). The surface tension controlling pa-
rameterb51 for all cases.

FIG. 4. The scaled and normalized correlation functionG(j) vs
j for ĥ5l̂51 and b51 on 2563 lattices, att5600 (L), 800
(h), 1000 (3), and 1200 (s). The inset showsj2G(j) vs j for
the same times. Sincêk&;6, the times scale well to;40 lattice
units.
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Earlier work by Farrell and Valls@7# on the same model
was carried out on an 813 lattice with ĥ;1, l̂;1, and
ŝ52 so thatRh;1. Their estimate ofa;1 was based on an
extrapolation of a time-dependent, effective exponent in
terms of an inverse droplet size. Puri and Dunweg@12# used
a cell dynamical system model and obtaineda;1 on a
model ~with 803 lattices! without the convective term in the
velocity equation and withĥ51, l̂52, and ŝ52. Using
their parameter valueswith the convective term on a 1283

lattice, we find an earlya;1 growth that crosses over to a
slowera;2/3 growth at later times. Shinozaki and Oono@8#
and Koga and Kawasaki@13# obtaineda;1 at late times
with their models~Model H!, ignoring the inertial terms. It
was noted in@8# that for larger values of viscosity there is a
crossover froma;1/3 to a;1 growth. Such a crossover
can occur because a larger viscosity increasesRd which then
favors the diffusive growth for domain sizesR(t),Rd . Lat-
tice Boltzmann simulations provide linear growth estimates
@9,10#. A recent lattice gas simulation in three dimensions
finds evidence for a 2/3 growth@19#. The model we have
used allows for compressibility@7#. However it has been
shown that in the viscous regimea does not change with the

incompressible condition@8,13#. To our knowledge, the
a52/3 in the inertial regime has not been observed in an
experiment.

In summary, we have used a single model system to probe
the hydrodynamic regimes that a phase separating fluid can
undergo. In particular, we have shown how domain growth
can be favored to take place in these regimes by an appro-
priate choice of the crossover lengthsRd andRh within a
finite size simulation. Moreover, we have obtained values for
the growth exponenta in these regimes in two and three
dimensions that are in agreement with the predictions of
scaling and dimensional arguments. Our work helps to ex-
plain the estimates of growth exponentsa obtained in a
number of previous studies.

We thank B. J. Alder, S. Bastea, R. Desai, and J. L.
Lebowitz for helpful discussions. T.L. acknowledges support
from the National Science and Engineering Research Coun-
cil of Canada. Y.W. is grateful to the University of Western
Ontario for a graduate research fellowship. Numerical simu-
lations were carried out using the computational resources of
the Advanced Computing Laboratory at the Los Alamos Na-
tional Laboratory and the Supercomputing Center at the Uni-
versity of Minnesota.

@1# J.D. Gunton, M. Miguel, and P.S. Sahni, inPhase Transition
and Critical Phenomena, edited by C. Domb and J.L. Lebow-
itz ~Academic, New York, 1983!; Vol. 8; H. Furukawa, Adv.
Phys.34, 703 ~1985!.

@2# A.J. Bray, Adv. Phys.43, 357 ~1994!.
@3# E.D. Siggia, Phys. Rev. A20, 595 ~1979!.
@4# H. Furukawa, Phys. Rev. A31, 1103 ~1985!; Physica A204,

237 ~1994!.
@5# M.S. Miguel, M. Grant, and J.D. Gunton, Phys. Rev. A31,

1001 ~1985!.
@6# N.C. Wong and C. Knobler, Phys. Rev. A24, 3205~1981!; A.

Cumming and P. Wiltzius, Phys. Rev. Lett.65, 863~1990!; A.
Cumming, P. Wiltzius, F.S. Bates, and J.H. Rosedale, Phys.
Rev. A 45, 885 ~1992!; F.S. Bates and P. Wiltzius, J. Chem.
Phys.91, 3258~1989!.

@7# J.E. Farrell and O.T. Valls, Phys. Rev. B40, 7027~1989!; O.T.
Valls and J.E. Farrell, Phys. Rev. E47, R36 ~1993!.

@8# A. Shinozaki and Y. Oono, Phys. Rev. E48, 2622~1993!.
@9# S. Chen and T. Lookman, J. Stat. Phys.81~1!, 223 ~1995!;

81~2!, 223 ~1995!.

@10# F.J. Alexander, S. Chen, and D.W. Grunau, Phys. Rev. B48,
R990 ~1993!.

@11# Y.Wu, F.J. Alexander, T. Lookman, and S. Chen, Phys. Rev.
Lett. 74, 3852~1995!.

@12# S. Puri and B. Dunweg, Phys. Rev. A45, R6977~1992!.
@13# T. Koga and K. Kawasaki, Physica A196, 389 ~1993!;

T. Koga, K. Kawasaki, M. Takenaka, and T. Hashimoto,
Physica A198, 473 ~1993!.

@14# G. Leptoukh, B. Strickland, and C. Roland, Phys. Rev. Lett.
74, 3636~1995!.

@15# E. Velasco and S. Toxvaerd~unpublished!; J. Phys. Condens.
Matter 6, A205 ~1994!; P. Ossadnik, M.F. Gyure, H.E.
Stanley, and S.C. Glotzer Phys. Rev. Lett.72, 2498
~1994!.

@16# C.K. Haas and J.M. Torkelson, Phys. Rev. Lett.75, 3134
~1995!.

@17# S. Bastea and J.L. Lebowitz, Phys. Rev. E52, 3521~1995!.
@18# S. Bastea and J.L. Lebowitz, Phys. Rev. Lett.75, 3776~1995!.
@19# F. Appert, J. Olson, D. Rothman, and S. Zaleski, J. Stat. Phys.

81, 181 ~1995!.

5516 53BRIEF REPORTS


