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Spinodal decomposition in fluids: Diffusive, viscous, and inertial regimes
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Using a Langevin description of spinodal decomposition in fluids, we examine domain growth in the
diffusive, viscous, and inertial regimes. In the framework of this model, numerical results corroborate earlier
theoretical predictions based on scaling arguments and dimensional an®}€i63-651X96)05505-3

PACS numbews): 64.70.Ja, 61.20.Ja, 64.6Q.Qb, 05.70.Ln

The dynamics of phase transitions in binary fluidsstrength of the interfacial energy K. Below the critical
guenched into the coexistence region has been the subject @imperaturea andb are positive constants.
considerable study in recent yedfs2]. It is generally ac- After the fluid is quenched, single phase droplets form
cepted that long after the quench, the phase separation dind grow. In the coarsening process a competition between
namics can be characterized by a single time dependemydrodynamic and thermodynamic effects can lead to three
length scaleR(t)~t“. As a result, much attention has fo- gynamical regimes: the diffusive, viscous, and inerfia4].
cused on how domains grow in time — specifically what isyye giscuss these briefly, using dimensional analysis based
the growth exponent? on Egs.(1) and(2).

Scaling and dimensional analyses due to Sidgia Fu- In the diffusive regime, the fluid velocities are small, and
rukawa[4], San Miguel, G_rant, an_d Guntd[rs_] and more the advective term iifl) is negligible compared to the order
recentl_y Bray[ 2] addr_ess this question. Experimerig) a_md parameter diffusion. Thereforél) becomesd,y~T'V2u.
numerical 7—14] studies, however, have not necessarily sup-.. the chemical potential— /R wherex is th of
ported these theories, sometimes providing conflicting result Ince the chemical pote ad. K erex Is the surtace
[15]. Often overlooked in spinodal decomposition in binary ‘Ms10N ancR S the characteristic lengﬂf, Sf,‘;’"e in the system
fluids is that several stages of growth can occur, in each of-€-» domain size we haveR(t)~(I'«) % The coeffi-
which a different transport mechanism dominates. This facEi€ntl'« implies that the growth in this regime is driven by
has been reemphasized [@&,4,17,18. Individual experi- diffusion and surface tension. In two dimensions, for ex-
ments and numerical simulations typically access only a par@mple, the surface tensianis given by« =4/3(28K)"?[4].
ticular regime. Lacking has been a clear demonstratigi)of In the viscous regime, hydrodynamics becomes relevant.
the existence of these distinct regimes within a single modén particular, in the velocity Eq(2), the viscous term domi-
and, subsequently?) quantitative results in these regimes hates the inertial terms. If one ignores the inertial and bulk
which validate theoretical predictiofi—5]. In this paper we  Viscosity terms, the shear stress term is balanced by the force
address these points. due to the gradient in the chemical potential. Thus

To simulate phase separation in a binary fluid, we used?V’U~\¢Vu so that R(t)~\«/nt. This is the linear
the Langevin model of Farrell and Val[g]. The order pa- growth law predicted by Siggi@3]. The coefficient\ «/ 7
rametery is the difference in the concentration of the two indicates growth driven by the surface tension and controlled
fluid components. Its evolution and that of the fluid velocity by the viscous force in the fluid. The length-sc&tg and

are given by time-scalety at which the system crosses over from the dif-
fusion regime to the viscous regime is given by setting
Ap=T2u—\V -[pu], 1) Te)YVAP~Nklqty.  Thus tg~ (73«32 and
Ry~ (I 7/\) Y2,
pou=nV2u+aV(V-u)—AV-(puu)—AyVu, (2 In the inertial regime, inertial effects dominate over the

viscous forces so thapdu/dt~A#Vu. This leads to
wherep is the average mass densilyjs an order parameter R(t)~ (A «/p)*?t??, as predicted by Furukawd] (see also
diffusion coefficient, andy is the shear viscosity. Here [2]). The coefficient here indicates that the growth is driven
o=n(1-2/)+ ¢, where( is the bulk viscosity, and isthe by the surface tension and controlled by the inertial effects.
spatial dimension. The dimensionless constagbuples the The crossover between the viscous regime and the inertial
order parameter to the fluid velocity and is also the strengtliegime thus occurs at length-scallg, and time-scalety,
of the convective flow. The chemical potential=6F/5¢  where A/ nto~(Ax/p) Y32 so that t,~ 7%/ prA?k? and
whereF is the free energy of the system at equilibrium givenR,,~ 7?/\ p«. Similarly, the lengthR; and timet; for cross-
by F[¢,ul=3/d%[pu+ 3ay*—by?+BK|Vy|2]. The over from diffusion directly to inertial are given by
R~ (I'?kp/\)*® and t;~T'p/\, respectively. This would
correspond to the inviscid flow case.
*On leave from Theoretical Division, Los Alamos National Labo-  To facilitate growth of domains in each of these regimes
ratory, Los Alamos, New Mexico 87544. and to access each of them within the framework of a single
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moc_iel, we varyRy and Ry, (relative to system si_z)eby ad- 40 —r—rrrrr— _
justing the parameterg, A, and 8. For convenience, the 30 3 E
actual(dimensionlessnumerical equations we solve are the C 3
following: 20 |- i
hp=VH = ¢p=BVZP]-AV [¢V]+pu, (3 I :
10 - —
wi= Vi + 62 ViV AoVil6® = o= BV24] s | ]
—)\Ek [Vi(vive) +vVivg] +w;. 4
The rescaled order parameter and transport quantities are (o 1
given in terms of those used infl) and (2) by 0 100 , 1000 10000
¢=(a/b)"y, v=(albpK)¥u, 3=n/pI'K, 5=0l/pI'K, Coend el
A=\ (b/T?apK)¥2. Space and time are rescaled byr, 100 1000 10000
t—T'Kt. The dimensionless crossover lengths are given by t
Rq¢=(7/N)*?, andR,= 7%/\k, where we have sgi=1. In
two dimensions, the surface tensice= 4/3(2B) 1/2’ so that FIG. 1. The domain growtR(t) vs timet in two dimensions for
by varying 8, we can control the surface tension. different crossover length®,, showing the change from growth in

We studied deep, critical or symmetric quenches withthe inertial regime 1??) to the viscous regimett?. The errors in
($)=0 throughout the course of the simulations, whéje the data due to different initial conditions are of the order of the size

denotes an ensemble average or space average. The oraérg](?) /?yr::c:iunzzgn 'Qfs‘;:n :hm’zratki‘se t:?gﬁg:ii@?;?fi; Re
arameter and velocity are initially taken as Gaussian fields ° K : . o
P y Y ?ocny calculated asdR/dt [4]. The data are consistent with Re

with {(¢)=(v;)=0, and<¢2.>:<vi )=0.005. The grid SIZ€ {13 the inertial regime and Reconst in the viscous regime.
Ax used was ,1'7 and the t'ij' stap was Chiosen as 0.051in The straight line has slope 1/3. The symbols represgat20,
two_and 0.02in three dl_men5|ons, respectively. The nUMeriy_1 g ~120 (x), 7=11, A=1, Ri~30 (0), »=5, A=1,

cal integration schem_e is the same ag7rll). The average Ry~7 (+) and 7=2A=1, Ry,~1 (0). The surface tension
doma|n_S|ze was defined as the first zero of the equgl t'mgontrolling parameteg=1 for all cases.

correlation functiorG(r,t) = ($(x,t) ¢(x+r,t)), the Fourier

transform of which is the structure fact8(k,t). The fields )

w andw; were Gaussian, white noise with covariance given8=1), respectively. AsR, (and Ry) decreases, the data
by the fluctuation-dissipation relatidiv,11]. We found that shows that the viscous growth and a later, faster inertial
adding noise does not alter the growth exponent in the scaBrowth occurs progressively earlier. Finite size effects and
ing regime. However it introduces curvature in the earlythe need for very long times to see adequate viscous and
growth so that longer times are required to reach the scalintjertial growth make quantitative analysis of growth in the
regime. The results we report here were obtained in the aterossover regimes difficult. The time evolution of the Rey-
sence of noise and in all cases were averaged over 3 or nplds number Re, the ratio of inertial to viscous effects, is
independent runs. consistent with the behavior &(t) asR,, decreases. Corre-

In two dimensions, on a 1024system, we lety=1, sponding to the parameters for domain growth, the insert to

A=1 andB=1. ThusRy~R,~1 (in lattice unit3 are both  Fig. 1 shows Re how changes from its behavior in the vis-
small compared to the lattice size=1024 so that for do- COUS regime, where Rel and is essentially constant, to that
main sizeR(t)>R,, the system will favor droplet growth in i the inertial regime where it increases S [4]. We find
the inertial regime. The data represented hy) (in Fig. 1  that for »=11, the system lies well within the viscous re-
shows thatR(t) has a behavior consistent with=2/3. In ~ 9ime until the mflue_nce of mertlal flow atzvery late times.
order to have a viscous regime, one requires'Ne scaled correlation functior8(¢) and £°G(¢) [8] are
Ry<R(t)<Ry,. This is satisfied by choosing, for example, shown in Fig. 2, forp=20,\=1, =1, where¢=r(k) and
7=20,A=1 andB=1 so thatR,~120 andRy~3. In Fig. 1  (K)=SkS(k,t)dk/[S(k,t)dk. The data collapses well for
the symbol () shows the growth under these conditions. ItSeveral times, indicating that the=1/2 growth is in the

is consistent withw=1/2 growth over a time interval span- Scaling regime. The scaling behavior f@r2/3 was shown
ning about 1.5 decades. The exponenuef1/2 in two di- N [11. _ _ _ _

mensions was predicted {i%]. SinceR,~ 120, the inertial Using this model in two dimensions, we previougiy]
force would not be expected to influence the growth until axamined the behavior of as a function of the coupling
late times wherR(t) is comparable withR,,. To indicate constanth (0<A<1), by fixing 7, B andp. For this one
how thea=1/2 growth could yield to the:=2/3 growth, we ~ parameter system, R,~1/2x and Ry~1\Y2  For
changed parameters to maRg smaller so that the crossover 1/2<A<1, R,~Ry~1, so that only the inertial growth sur-
from the viscous regime to the inertial regime can happewived. Forn— 0, the domain siz&(t) <Ry and the dominant
earlier. The symbols ¢) and(+) in Fig. 1 show data for mechanism was diffusion. It was the first attempt to show
R,~30 (=11, A=1, B=1) and R,~7 (»=5, A=1, within a single model different regimes, however, the one-
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FIG. 2. The scaled and normalized correlation func®(¥) vs FIG. 3. The domain growtiR(t) vs timet in threedimensions

&, where ¢=r(k) and the first moment(k)=[/kS(k,t)dk]/ for values of crossover length®, showing the change i from
[fS(k,t)], for =20, A=1, andB=1 on 1024< 1024 lattices, at inertial (t?®) to viscous {) regime. The errors are of the size of the
t=2500 (¢ ), 3000 (x), 4000 (©), 5000(+), and 6000 (J). The  symbols. The inset shows that the behavior of the Reynolds number
inset shows&2G(¢) versus ¢ for the same times and since Re is consistent with in the inertial regime andl in the viscous
(k)~25, scaling is good for-80 lattice units. regime. The straight IinesAhave slopes (+3- i) and 1(—-). The
symbols represeny=25, \=25 (O), 7=20,A=20 (0), 7=8,
parameter system was limited in how well it could captureh=8 (+), 7=1, A=1 (O). The surface tension controlling pa-
all three regimes. The competing mechanisms of viscosityiameter3=1 for all cases.
inertial force, and surface tension appear to demand a syste|g1 L . . .
with two parameters. Two-dimensional lattice Boltzmann Inite size ef_fect$ are more pron_o_unced in three dlmc_ansmns,
and lattice gas simulations seem to be carried out primarilyz?e;hzt tr:ﬁ |'£1_ert|il .reg'l?ttee('js tﬁgflcgg|':10 ?)(;Ctehs(: ?frrlgl-at'on
with relatively smallR;,, thus thea=2/3 estimates are con- f tS S: G '9. d 'f’Gp i ‘ S thl 9 tial orrelati
sistent with growth in the inertial regim®,10,17. The re- unc '%PS (f) an ﬁ_h (6) (Ilqsei)f ?r: € lllner 'a rfetgk:mz "t] .
sults from molecular dynamics are controversial. It has beer'tjf.ree imensions. The quaiily of the coflapse of the dala in
pointed ouf 18] that thea = 1/2 growth obtained ifil4] may ig. 4 fo.r severgl times indicates that the- 2/3 growth is in
be attributed to droplet coalescence. Velasco and Toxvael%]e scaling regime.
[15] observeda=1/2 crossing over tax=2/3 in their two-

dimensional molecular dynamics simulations. A recent ex- L A AL I
perimental study of near-critical two-dimensional phase i
separated polymer solutions obtained an early growth of i 2000

1 followed by at?® at late stagg16]. '%
Three-dimensional simulations were carried out on Egs. [
(3) and (4) using a system with 256attice sites and show 05 - %

—~
wr
O 0
o
np

-2000

behavior analogous to that observed in two dimensions. As r
above, we se=1. If =1 and\=1, R,~Ry~1 and are
small compared to the domain siR{t). One thus expects
inertial growth witha=2/3 at late times, and this is seen by i
the data represented byl) in Fig. 3. If 7=\ (with 0=
Ry~1), the system should favor growth in the viscous re- i
gime for sufficiently large. The symbols k) and (¢) in " T
Fig. 3 show growth forp=25, A\=25, and =20, A\=20, i ]
respectively. Asy increases, the growth becomes consistent i T
with a=1. The crossover between the viscous regime and 05
the inertial regime can be simulated through decreasing 0 200 400 600
Ry, while keepingRy small (~1). The symbols ¢) in Fig.
3 usedy=12,\=12 and show that a regime with a growth  F|G. 4. The scaled and normalized correlation funct@(z) vs
exponent of 1 gradually yields to a slower growth regime, a for 7=A=1 and =1 on 258 lattices, att=600 (¢ ), 800
2/3 type growth. Figure 8insed shows that the behavior of ([J), 1000 (x), and 1200 Q). The inset showg2G(¢) vs ¢ for
the Reynolds number Re is consistent with the growth forthe same times. Sinog)~ 6, the times scale well te-40 lattice
appropriate parameters in the inertial and viscous regimesunits.

G(©)
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Earlier work by Farrell and Vall§7] on the same model incompressible conditior{8,13]. To our knowledge, the
was carried out on an 81lattice with 7~1, A~1, and @=2/3 in the inertial regime has not been observed in an

&=2 so thatR,~ 1. Their estimate of-~1 was based on an €XPeriment.

. . . . In summary, we have used a single model system to probe
extrapolation of a time-dependent, effective exponent Mhe hydrodynamic regimes that a phase separating fluid can

terms of an inverse droplet size. Puri and DunWegj used  ndergo. In particular, we have shown how domain growth
a cell dynamical system model and obtained-1 on a can be favored to take place in these regimes by an appro-
model (with 80° lattices without the convective term in the priate choice of the crossover lengtRg and R, within a
velocity equation and withy=1, X=2, ando=2. Using finite size simulation. Moreover, we have obtained values for
their parameter valuewith the convective term on a 128 the growth exponent: in these regimes in two and three
lattice, we find an earlyr~1 growth that crosses over to a d|m(_enS|ons that are in agreement with the predictions of
slowera~ 2/3 growth at later times. Shinozaki and Odigd SC@"”Q and chmensmnal arguments. Our work_ help§ to ex-
and Koga and KawasaKil3] obtaineda~1 at late times plambthe fest|m_a tes ct)f dgrowth exponents obtained in a
with their models(Model H), ignoring the inertial terms. It AUMBET Of Previous studies.

was noted irf 8] that for larger values of viscosity there is a

crossover froma~1/3 to a~1 growth. Such a crossover ~We thank B. J. Alder, S. Bastea, R. Desai, and J. L.
can occur because a larger viscosity increewhich then Lebowitz for helpful discussions. T.L. acknowledges support

favors the diffusive growth for domain siz&t)<Ry. Lat- from the National Science and Engineering Research Coun-

. . . C . cil of Canada. Y.W. is grateful to the University of Western
tice Boltzmann simulations provide linear growth estimatesyniario for a graduate research fellowship. Numerical simu-

[9,10]. A recent lattice gas simulation in three dimensionsations were carried out using the computational resources of
finds evidence for a 2/3 growtf19]. The model we have the Advanced Computing Laboratory at the Los Alamos Na-
used allows for compressibility7]. However it has been tional Laboratory and the Supercomputing Center at the Uni-
shown that in the viscous regimedoes not change with the versity of Minnesota.
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